In September 2021, Matsuo Laboratory’s paper, “Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization” was published in the journal of in the journal of Advances in Neural Information Processing Systems.
▼Abstract
This paper presents a new algorithm for domain generalization (DG), test-time template adjuster (T3A), aiming to robustify a model to unknown distribution shift. Unlike existing methods that focus on training phase, our method focuses test phase, i.e., correcting its prediction by itself during test time. Specifically, T3A adjusts a trained linear classifier (the last layer of deep neural networks) with the following procedure: (1) compute a pseudo-prototype representation for each class using online unlabeled data augmented by the base classifier trained in the source domains, (2) and then classify each sample based on its distance to the pseudoprototypes. T3A is back-propagation-free and modifies only the linear layer; therefore, the increase in computational cost during inference is negligible and avoids the catastrophic failure might caused by stochastic optimization. Despite its simplicity, T3A can leverage knowledge about the target domain by using off-the-shelf test-time data and improve performance. We tested our method on four domain generalization benchmarks, namely PACS, VLCS, OfficeHome, and TerraIncognita, along with various backbone networks including ResNet18, ResNet50, Big Transfer (BiT), Vision Transformers (ViT), and MLP-Mixer. The results show T3A stably improves performance on unseen domains across choices of backbone networks, and outperforms existing domain generalization methods.
▼Read more
https://proceedings.neurips.cc/paper/2021/hash/1415fe9fea0fa1e45dddcff5682239a0-Abstract.html